A Parser Combinator in PureScript (part 1/2)

Posted on June 24, 2019 by Riccardo

Let’s start from defining the Parser type. The idea is that a parser is a function that takes a string and tries to “parse” something out of it.

Whenever parsing fails the function returns Nothing. Otherwise, a tuple of results is produced: an intermediate value (the parsed value) and the remainder of the string.

This is really similar to the intuition behind the State Monad. The previous post is all about it!

The Parser type is defined as follows:

Then we need a way to run a parser given a string to parse:

To allow composition of parsers we define instances up to Monad:

Implementing Parsers

The simplest parser we can create is the one that always fails:

The second one is a parser that consumes a Char:

In other words, in case the string is empty it fails, otherwise it produces a tuple of an intermediate result (i.e. the first character of the string) and the remainder of the string.

Example:

The third parser is the one that consumes a Char that satisfies a predicate. This is where we start using the Monad instance to both have access to the intermediate value and be able to fail:

With sat in our toolbox we can introduce many more parsers:

Example

We can also use recursive calls and create more sophisticated parsers. For example a string parser:

This parser just keeps trying to parse the next character from the passed string s. The intermediate result (i.e. _ <- char x) is always discarded. That’s because either

  • The parser gets to the end of the string s by parsing each character successfully. That means the intermediate value is exactly s (i.e. the recursive Cons x xs)
  • The parser fails parsing any character of the string s and close circuits to Nothing

Example

The Whole Code

module Main where

import Prelude
import Effect (Effect)
import Effect.Console (logShow)
import Data.Maybe
import Data.Tuple
import Data.String.Yarn
import Data.List
import Data.Char.Unicode
import Data.String.CodeUnits as CU

newtype Parser a = Parser (String -> Maybe (Tuple a String))

runParser :: forall a. Parser a -> String -> Maybe (Tuple a String)
runParser (Parser g) s = g s

instance functorParser :: Functor Parser where
    -- map :: forall a b. (a -> b) -> f a -> f b
    map g f = Parser (\s -> case runParser f s of
                              Just (Tuple v s') -> Just $ Tuple (g v) s'
                              Nothing           -> Nothing)

instance applyParser :: (Functor Parser) => Apply Parser where
    -- apply :: forall a b. f (a -> b) -> f a -> f b
    apply fg f = Parser (\s -> case runParser fg s of
                                 Just (Tuple g s') ->
                                   case runParser f s' of
                                     Just (Tuple v s'') -> Just $ Tuple (g v) s''
                                     Nothing            -> Nothing
                                 Nothing           -> Nothing)

instance applicativeParser :: (Apply Parser) => Applicative Parser where
    -- pure :: forall a. a -> f a
    pure x = Parser (\s -> Just $ Tuple x s)

instance bindParser :: (Apply Parser) => Bind Parser where
    -- bind :: forall a b. m a -> (a -> m b) -> m b
    bind m g = Parser (\s -> case runParser m s of
                               Just (Tuple v s') -> runParser (g v) s'
                               Nothing           -> Nothing)

instance monadParser :: (Bind Parser) => Monad Parser

fail :: forall a. Parser a
fail = Parser (\_ -> Nothing)

anyChar :: Parser Char
anyChar = Parser (\s -> case toChars s :: List Char of
                          Nil       -> Nothing
                          Cons x xs -> Just $ Tuple x $ fromChars xs)

sat :: (Char -> Boolean) -> Parser Char
sat pred = do
    c <- anyChar
    if pred c then pure c else fail

digit :: Parser Char
digit = sat isDigit

lower :: Parser Char
lower = sat isLower

upper :: Parser Char
upper = sat isUpper

letter :: Parser Char
letter = sat isAlpha

alphanum :: Parser Char
alphanum = sat isAlphaNum

char :: Char -> Parser Char
char c = sat ((==) c)

string :: String -> Parser String
string s =
  map fromChars $ case toChars s :: List Char of
       Nil       -> pure Nil
       Cons x xs -> do
          _ <- char x
          _ <- string $ fromChars xs
          pure $ Cons x xs

main :: Effect Unit
main = do
  logShow $ runParser anyChar "string"
  -- (Just (Tuple 's' "tring"))

  logShow $ runParser (char 's') "string"
  -- (Just (Tuple 's' "tring"))

  logShow $ runParser (char 'Z') "string"
  -- Nothing

  logShow $ runParser digit "3tring"
  -- (Just (Tuple '3' "tring"))

  logShow $ runParser (string "stri") "string"
  -- (Just (Tuple "stri" "ng"))

  logShow $ runParser (string "ZZZ") "string"
  -- Nothing